Course Specifications

Programme(s) on which the course is given	B.Sc.
Mathematics, pure mathematics,	
	Computer science
and	
pure mathematics and statistics	
Major or Minor element of programmes	Major
Department offering the programme	Mathematics
Department offering the course	Mathematics
Academic year / Level	First (1)
Date of specification approval	September
2012	
A- Basic Information	
Title: Mathematical Analysis 2	Code:
M114	
Credit Hours: 4 hrs. Lecture: 3 hrs.	
Tutorial: 2 hrs Practical: 0 Total:	4 hrs.
B- Professional Information	

1 – Overall Aims of Course

Introduce basic definitions about real functions, types of real functions, operations on functions. Develop skills on continuity and uniform continuity of function. Teach and use definite and indefinite integrals. Illustrate several applications on integration. Develop skills on geometrical interpretation of derivatives.

2 – Intended Learning Outcomes of Course (ILOs)

a- Knowledge and understanding:

On completion of the course, successful students should be able to:

a1- Realize a knowledge and understanding of fundamental definitions and ideas of differentiation and integration
a2- Have good knowledge about the mathematical terminologies used in this course

a3- Develop the knowledge about the methods of solutions of some ideas taught in this course for further use in other applied and computational courses.

b- Intellectual skills

On completion of the *course*, successful students should be able to:

b1- Construct a program of exercises according to the type of the course

b2- Formulate the topics of the course into groups according to their application

b3- Identify the different methods introduced in the course for suitable use in dealing with problems in Mathematical Analysi

b4- Recognise ideas of the course like as Taylor infinite series, maxima and minima, L' Hospital rule in application in Physics and applied mathematics and to be able to use appropriate mathematical tools in physics problems

c- Professional and practical skills

On completion of the course, successful students should be able to:

- c1 Apply a program of exercises based on the tools they learned in the course.
- c2 Test the outcomes of the course through its use in practical application in different scientific fields.
- c3 Write the results of Mathematical ideas, in formal presentations, both oral and written

d- General and transferable skills

On completion of the course, successful students should be able to:

- d1 Make a program of exercise based on the tools he learned in the course.
- d2 Describe the outcomes of the course through its use in practical application in different scientific fields.
- d3 Explain their own learning and use appropriate learning resources; work both independently and as part of a team.

3- Contents

Торіс	No. of	Lectu	Tutor
-	hours	re	ial/Pr
			actica
			1
1- Riemann integral	5	1	2
-The concept of the Riemann			
integral.			
- Functions that are Riemann			
integrable and examples of			
unintegrable functions.			
Fundamental theorem of			
calculus.			
Properties of definite			
integration			
2-Definite integrations	25	5	10
-Direct integrations			
-integration by substitutions			
-integration of some			
trigonometric functions			
-Types of real functions			
-Operations on functions and			
bounded functions			
-sup $f(x)$ and $\inf f(x)$			

-Theorems on con	tinuity and			
uniform continuit	y			
3- Indefinite integ	grations	25	5	10
-integration by pa	nrts			
-reduction formul	las			
-Eulers substitution	ons			
-integration of irr	ational			
-integration of tri	gonometric			
and hyperbolic fu	nctions			
-integration of bir	nomial			
differential				
Improper integra	ls			
4-Applications on	integrations.	15	3	6
4– Teaching and lea	arning method	S		
4.1- Lectures				
4.2- Working o	on hand in assi	gnments		
4.3- Attending	g practical class	ses		
5- Student assessm	ent methods			
5.1 Mid term	written			
exam	to a	issess	unders	tanding
	comj	petencies		
5.2 Oral Exam	to a	ssess at	ttendanc	e and
	inter	esting.		
5.3 Semester	hand in to	assess	underst	anding
assignments	assignments professionalism.			
5.4 Final term	written to as	sess comp	rehensio	on.
Exam				
Assessment schedu	le			
Assessment 1	Mid term	We	eek 7	
Assessment 2	semester acti	vities We	eek 5 and	d 8
Assessment 3	Final term or	al We	eek 13	
	exam			
Assessment 4	final term wr	itten We	eek 14	
	exam			

Weighting of assessments

Mid-Term Examination	
Semester Work (homework assignments	20%
+ oral tests)	
Other types of assessment	00%
Final-term written Examination	60%
Total	100%

- Any formative only assessments
- 6- List of references
- 6.1 Course notes Collected and prepared notes that cover the main topics in the course content
- 6.2 Essential books (text books) Calculus , Swoleowski, Olinick and Pence, 1993
- 6.3 Recommended books 1-T.M.Apostol,Mathematical Analysis,Reading,Mass:Addison-Wesley,1957 2-W.Rudin,Priciples of Mathematical Analysis,2nd edition New York:McGraw-Hill 1964
- 6.4 Periodicals, Web sites, ... etc None.
 - 7- Facilities required for teaching and learning None

Course coordinator: Prof. Mohamed A. Ramadan Head of Department: Prof. Mohamed A. Ramadan Date: / /